
Lazy	vs.	Eager	Loading	
Strategies	in	JPA	2.1

Patrycja	Wegrzynowicz	
CTO,	Yon	Labs	
JavaOne	2018

About	Me
• 20+	professional	experience		

• SoLware	engineer,	architect,	head	of	
soLware	R&D		

• Author	and	speaker		
• JavaOne,	Devoxx,	JavaZone,	Jazoon,	
TheServerSide	Java	Symposium,	OOPSLA,	
ASE,	others		

• Top	10	Women	in	Tech	2016	in	Poland	
• Founder	and	CTO	of	Yon	Labs/Yonita	

• ConsulWng,	trainings	and	code	audits	
• Automated	detecWon	and	refactoring	of	
soLware	defects	

• Security,	performance,	concurrency,	
databases		

• TwiXer	@yonlabs	

About	Me
• 20+	professional	experience		

• SoLware	engineer,	architect,	head	of	
soLware	R&D		

• Author	and	speaker		
• JavaOne,	Devoxx,	JavaZone,	Jazoon,	
TheServerSide	Java	Symposium,	OOPSLA,	
ASE,	others		

• Top	10	Women	in	Tech	2016	in	Poland	
• Founder	and	CTO	of	Yon	Labs/Yonita	

• ConsulWng,	trainings	and	code	audits	
• Automated	detecWon	and	refactoring	of	
soLware	defects	

• Security,	performance,	concurrency,	
databases		

• TwiXer	@yonlabs	

Agenda

•Motivation	
• JPA	
• Performance	

•Loading	Strategies	
•Projections	and	Aggregation	
•Lazy	vs.	Eager	
•Entity	Graphs

Databases

Databases
The	Mordor	of	Java	Developers

Performance

Hibernate	Puzzle	#1		
Heads	of	Hydra

@Entity
public class Hydra {

private Long id;
private List<Head> heads = new ArrayList<Head>();

@Id @GeneratedValue
public Long getId() {…} 
@OneToMany(cascade=CascadeType.ALL)
public List<Head> getHeads() {

return Collections.unmodifiableList(heads);
}

}

// new EntityManager and new transaction:
// creates and persists the hydra with 3 heads

// new EntityManager and new transaction
Hydra found = em.find(Hydra.class, hydra.getId());

8

How	Many	Queries	in	2nd	Tx?
@Entity
public class Hydra {

private Long id;
private List<Head> heads = new ArrayList<Head>();

@Id @GeneratedValue
public Long getId() {…} 
@OneToMany(cascade=CascadeType.ALL)
public List<Head> getHeads() {

return Collections.unmodifiableList(heads);
}

}

// new EntityManager and new transaction:
// creates and persists the hydra with 3 heads

// new EntityManager and new transaction
Hydra found = em.find(Hydra.class, hydra.getId());

9

(a)1 select
(b)2 selects
(c)1+3 selects
(d)2 selects, 1 delete,

3 inserts
(e)None of the above

How	Many	Queries	in	2nd	Tx?
(a) 1	select	
(b) 2	selects	
(c) 1+3	selects	
(d) 2	selects,	1	delete,	3	inserts		
(e) None	of	the	above		

During	commit	hibernate	checks	whether	the	
collecWon	property	is	dirty	(needs	to	be	re-created)	
by	comparing	Java	idenWWes	(object	references).

Puzzle	#1	Heads	of	Hydra	
Another	Look

@Entity
public class Hydra {

private Long id;
private List<Head> heads = new ArrayList<Head>();

@Id @GeneratedValue
public Long getId() {…} 
@OneToMany(cascade=CascadeType.ALL)
public List<Head> getHeads() {

return Collections.unmodifiableList(heads);
}

}

// new EntityManager and new transaction:
// creates and persists the hydra with 3 heads

// new EntityManager and new transaction
// during find only 1 select
Hydra found = em.find(Hydra.class, hydra.getId());
// during commit 1 select (heads),1 delete (heads),3 inserts (heads)

11

Lessons	Learned

•Expect	unexpected	;-)	
•Prefer	field	access	mapping	
•Operate	on	collection	references	returned	by	
hibernate	
• Don’t	change	collection	references	unless	you	know	what	you’re	

doing

Lessons	Learned

•Expect	unexpected	;-)	
•Prefer	field	access	mapping	
•Operate	on	collection	references	returned	by	
hibernate	
• Don’t	change	collection	references	unless	you	know	what	you’re	

doing	
• List<Head> newHeads = new List<>(hydra.getHeads());

hydra.setHeads(newHeads);

Other	Providers?
•EclipseLink	

• 1	select

•OpenJPA
• IllegalAccessError
• not able to enhance the class, in both modes: runtime

& build-time enhancing	

•Datanucleus	
• 1	select	

• ‘A	Performance	Comparison	of	JPA	Providers’

Lessons	Learned

•A	lot	of	depends	on	a	JPA	provider!	
•JPA	is	a	spec	

• A	great	spec,	but	only	a	spec	
• It	says	what	to	implement,	not	how	to	implement	

•You	need	to	tune	performance	of	an	application	in	a	
concrete	environment

Performance	Tuning

•What	is	performance?	
•Why	are	loading	strategies	so	important?

Request	Handling

Performance:	Throughput

Performance:	Execution	Time

Performance:	Latency

Performance:	Response	Time

Example

Employee	Entity
@Entity
 class Employee {

@Id @GeneratedValue
private Long id; 
private String firstName;  
private String lastName; 
private BigDecimal salary; 
@OneToOne @JoinColumn(name = "address_id")  
private Address address; 
@Temporal(TemporalType.DATE) 
private Date startDate; 
@Temporal(TemporalType.DATE) 
private Date endDate;  
@ManyToOne @JoinColumn(name = "manager_id")  
private Employee manager;
// …

}

23

Sum	of	Salaries	By	Country	
Select	All	(1)

TypedQuery<Employee> query = em.createQuery(
 "SELECT e FROM Employee e", Employee.class);
List<Employee> list = query.getResultList();  

// calculate sum of salaries by country
// map: country->sum
Map<String, BigDecimal> results = new HashMap<>();  
for (Employee e : list) { 
 String country = e.getAddress().getCountry();  
 BigDecimal total = results.get(country);  
 if (total == null) total = BigDecimal.ZERO;  
 total = total.add(e.getSalary()); 
 results.put(country, total); 
} 

24

Sum	of	Salaries	by	Country 
Select	Join	Fetch	(2)

TypedQuery<Employee> query = em.createQuery(
 "SELECT e FROM Employee e
 JOIN FETCH e.address", Employee.class); 
List<Employee> list = query.getResultList();  

// calculate sum of salaries by country
// map: country->sum
Map<String, BigDecimal> results = new HashMap<>();  
for (Employee e : list) { 
 String country = e.getAddress().getCountry();  
 BigDecimal total = results.get(country);  
 if (total == null) total = BigDecimal.ZERO;  
 total = total.add(e.getSalary()); 
 results.put(country, total); 
} 

25

Sum	of	Salaries	by	Country 
Projection	(3)

Query query = em.createQuery(
 "SELECT e.salary, e.address.country
 FROM Employee e"); 
List<Object[]> list = (List<Object[]>) query.getResultList();  
// calculate sum of salaries by country
// map: country->sum
Map<String, BigDecimal> results = new HashMap<>();  
for (Object[] e : list) { 
 String country = (String) e[1]; 
 BigDecimal total = results.get(country);  
 if (total == null) total = BigDecimal.ZERO;  
 total = total.add((BigDecimal) e[0]);  
 results.put(country, total); 
} 

26

Sum	of	Salaries	by	Country 
Aggregation	JPQL	(4)

Query query = em.createQuery(
 "SELECT SUM(e.salary), e.address.country
 FROM Employee e
 GROUP BY e.address.country");
List<Object[]> list = (List<Object[]>) query.getResultList();  
// already calculated! 

27

Comparison	1-4	(Hibernate)	
100000	Employees,	Different	DB	Locations

Local DB
(ping: ~0.05ms)

North California
(ping: ~38ms)

EU Frankfurt
(ping: ~420ms)

(1) Select All
(N+1) 26756ms 2-3 hours ~1 day

(2) Select Join
Fetch

(3) Projection

(4) Aggregation
JPQL

Comparison	1-4	
100000	Employees,	Different	DB	Locations

Local DB
(ping: ~0.05ms)

North California
(ping: ~38ms)

EU Frankfurt
(ping: ~420ms)

(1) Select All
(N+1) 26756ms 2-3 hours ~1 day

(2) Select Join
Fetch 4854ms 18027ms 25096ms

(3) Projection

(4) Aggregation
JPQL

Comparison	1-4	
100000	Employees,	Different	DB	Locations

Local DB
(ping: ~0.05ms)

North California
(ping: ~38ms)

EU Frankfurt
(ping: ~420ms)

(1) Select All
(N+1) 26756ms 2-3 hours ~1 day

(2) Select Join
Fetch 4854ms 18027ms 25096ms

(3) Projection 653ms 2902ms 5006ms

(4) Aggregation
JPQL

Comparison	1-4	
100000	Employees,	Different	DB	Locations

Local DB
(ping: ~0.05ms)

North California
(ping: ~38ms)

EU Frankfurt
(ping: ~420ms)

(1) Select All
(N+1) 26756ms 2-3 hours ~20-24 hours

(2) Select Join
Fetch 4854ms 18027ms 25096ms

(3) Projection 653ms 2902ms 5006ms

(4) Aggregation
JPQL 182ms 353ms 1198ms

Performance	Tuning:	Data

•Data	and	processing	close	to	each	other	
• Large	distance	to	data	=>	long	round-trip	=>	high	latency	

•Get	your	data	in	bigger	chunks		
• Many	small	queries	=>	many	round-trips	=>	huge	extra	time	on	

transport	=>	high	latency	

•Don’t	ask	about	the	same	data	many	times	
• Extra	processing	time	+	extra	transport	time

Performance	Tuning:	Data

•Architecture	and	design	
• Components,	communication,	algorithms	

•Loading		
• Model	
• Strategies	

•Caching	
• Cache	as	much	as	you	can

JPA	Loading	Strategies	
Load	Your	Data	Smartly

•Loading	strategy:	No	JPA	;-)	
• No	JPA-managed	entities!	
• Projection	and	aggregation	

•Loading	strategy:	LAZY	for	sure	
•Loading	strategy:	EAGER	for	sure	
•Loading	strategy:	It	depends	

• My	favourite	;-)

Loading	Strategy:		
No	JPA	Managed	Entities

•Listing	and	reporting	anti-patterns	
• The	same	model	used	for	different	contexts	

• Business	context	vs.	reporting	context	
• Too	much	data	loaded	
• Heavy	processing	on	the	Java	side	

•Use	projection	and	aggregation	in	JPA!

Projection	
JPQL	=>	Data	Transfer	Object

Query query = em.createQuery(
"SELECT new com.yonita.jpa.EmployeeDto(
 e.salary, e.address.country) 
FROM Employee e”);

// List<EmployeeDto>
List list = query.getResultList();

36

Projection	&	Aggregation	
JPQL	=>	Data	Transfer	Object

Query query = em.createQuery(
"SELECT new com.yonita.jpa.CountryStatDto(
 sum(e.salary), e.address.country) 
FROM Employee e 
GROUP BY e.address.country");

// List<CountryStatDto>
List list = query.getResultList();

37

Projection	&	Aggregation	
SQL	=>	Data	Transfer	Object

@SqlResultSetMapping(
name = "countryStatDto",
classes = {

@ConstructorResult(
targetClass = CountryStatDto.class,
columns = {
@ColumnResult(name = "ssum", type = BigDecimal.class),
@ColumnResult(name = "country", type = String.class)
}

)
}

)

38

Projection	&	Aggregation	
SQL	=>	Data	Transfer	Object

Query query = em.createNativeQuery( 
"SELECT SUM(e.salary), a.country
FROM employee e 
JOIN address a ON e.address_id = a.id
GROUP BY a.country", "countryStatDto");

// List<CountryStatDto>
List list = query.getResultList();

39

Projection	
Wrap-up

•JPA	2.0	
• Only	JPQL	query	to	directly	product	DTOs	

•JPA	2.1	
• JPQL	and	native	queries	to	produce	DTOs	

• 	Managed	object	
• Sync	with	database		
• 	L1/L2cache		

•Use	cases	for	DTOs	aka	Direct	Value	Object		
• Reporing,	statistics,	history	
• Read-only	data,UI	data		
• Performance:		

• No	need	for	managed	objects		
• Rich	(or	fat)	managed	objects		
• Subset	of	attributes	required		
• 	Gain	speed		
• Offload	an	app	server	

Aggregation	
Wrap-up

•JPA	2.0	
• Selected	aggregation	functions:	COUNT,	SUM,	AVG,	MIN,	MAX		

•JPA	2.1	
• All	functions	as	supported	by	a	database	
• Call	any	database	specific	function	using	FUNCTION	keyword	

•Database	specific	aggregate	functions	
• MSSQL:STDEV,STDEVP,VAR,VARP,...		
• MySQL:BIT_AND,BIT_OR,BIT_XOR,...		
• Oracle:MEDIAN,PERCENTILE,...		
• More...		

•Use	cases	
• Reporing,	statistics,	history	
• Performance:		

• 	Gain	speed		
• Offload	an	app	server	to	a	database

Loading	Strategy:		
EAGER	for	sure!

•We	know	what	we	want	
• Known	range	of	required	data	in	this	execution	path	

•We	want	a	little	
• Relatively	small	entity,	no	need	to	divide	it	into	tiny	pieces

Loading	Strategy:		
Usually	Better	EAGER

•Network	latency	to	a	database	
• Lower	number	of	round-trips	to	a	database	with	EAGER	loading

Loading	Strategy:		
LAZY	for	sure!

•We	don’t	know	what	we	want	
• ‘I’ll	think	about	that	tomorrow’	by	Scarlett	O’hara	
• Load	only	required	data	

•We	want	a	lot	
• Divide	and	conquer	
• Load	what’s	needed	in	the	first	place

Large	Objects
•Lazy	Property	Fetching		

• @Basic(fetch	=	FetchType.LAZY)		

•Recommended	usage	
• Blobs		
• Clobs	
• Formulas		

•Remember	about	byte-code	instrumentation	
• Otherwise	will	not	work	
• Silently	ignores	

Large	Object

•Something	smells	here…	
•Do	you	really	need	them?

Large	Object

•Something	smells	here…	
•Do	you	really	need	them?	
•But,	do	you	really	need	them?

Large	Object

•Something	smells	here…	
•Do	you	really	need	them?	
•Ponder	over	your	object	model	and	use	cases,	
otherwise	it’s	not	gonna	work	

Large	Collections

•Divide	and	conquer!	
•Definitely	lazy	
•You	don’t	want	a	really	large	collection	in	memory	

• High	memory	consumption/multithreaded	environment	=>	frequent	
garbage	collections	=>	slow	server	

•Batch	size	
• JPA	provider	specific	configuration

Hibernate	Puzzle	#2	
Plant	a	Tree

@Entity
public class Forest {

@Id @GeneratedValue
private Long id;
@OneToMany
private Collection<Tree> trees = new HashSet<Tree>();
public void plantTree(Tree tree) {

return trees.add(tree);
}

}

// new EntityManager and new transaction:
// creates and persists a forest with 10.000 trees

// new EntityManager and new transaction
Tree tree = new Tree(“oak”); em.persist(tree);  
Forest forest = em.find(Forest.class, id); forest.plantTree(tree);

50

How	Many	Queries	in	2nd	Tx?
@Entity
public class Forest {

@Id @GeneratedValue
private Long id;
@OneToMany
private Collection<Tree> trees = new HashSet<Tree>();
public void plantTree(Tree tree) {

return trees.add(tree);
}

}

// new EntityManager and new transaction:
// creates and persists a forest with 10.000 trees

// new EntityManager and new transaction
Tree tree = new Tree(“oak”);
em.persist(tree); 
Forest forest = em.find(Forest.class, id);
forest.plantTree(tree);

51

(a)1 select, 2 inserts
(b)2 selects, 2 inserts
(c)2 selects, 1 delete,

10.000+2 inserts
(d)2 selects, 10.000

deletes, 10.000+2
inserts

(e)Even more ;-)

How	Many	Queries	in	2nd	Tx?
(a)	1	select,	2	inserts 
(b)	2	selects,	2	inserts 
(c)	2	selects,	1	delete,	10.000+2	inserts  
(d)	2	selects,	10.000	deletes,	10.000+2	inserts	
(e)	Even	more	;-)		

The	combinaWon	of	OneToMany	and	Collec8on	
enables	a	bag	semanWc.	That’s	why	the	collecWon	is	
re-created.	

Plan	a	Tree	Revisited
@Entity
public class Forest {

@Id @GeneratedValue
private Long id;
@OneToMany
private List<Tree> trees = new ArrayList<Tree>();
public void plantTree(Tree tree) {

return trees.add(tree);
}

}

// new EntityManager and new transaction:
// creates and persists a forest with 10.000 trees

// new EntityManager and new transaction
Tree tree = new Tree(“oak”); em.persist(tree);  
Forest forest = em.find(Forest.class, id); forest.plantTree(tree);

53

STILL BAG SEMANTIC

Use OrderColumn or
IndexColumn for list

semantic.

Plan	a	Tree	Revisited
@Entity
public class Forest {

@Id @GeneratedValue
private Long id;
@OneToMany
private Set<Tree> trees = new HashSet<Tree>();
public void plantTree(Tree tree) {

return trees.add(tree);
}

}

// new EntityManager and new transaction:
// creates and persists a forest with 10.000 trees

// new EntityManager and new transaction
Tree tree = new Tree(“oak”); em.persist(tree);  
Forest forest = em.find(Forest.class, id); forest.plantTree(tree);

54

1. Collection elements
loaded into memory

2. Unnecessary queries
3. Transaction and

locking schema
problems: version/
optimistic locking

Plan	a	Tree	Revisited
@Entity
public class Forest {

@Id @GeneratedValue
private Long id;
@OneToMany(mappedBy = “forest”)
private Set<Tree> trees = new HashSet<Tree>();
void plantTree(Tree tree) {

return trees.add(tree);
}

}

@Entity public class Tree {

@Id @GeneratedValue
private Long id;
private String name;
@ManyToOne private Forest forest;

public void setForest(Forest forest) {
this.forest = forest;
forest.plantTree(this);

}
} 55

Set semantic on the
inverse side forces
loading of all trees.
(when parent/child
synced in oo code)

Loading	Strategy:	It	Depends

•You	know	what	you	want		
• But	it’s	dynamic,	depending	on	runtime	parameters		

•That	was	the	problem	in	JPA	2.0	
• Fetch	queries	
• Provider	specific	extensions	
• Different	mappings	for	different	cases		

•JPA	2.1	comes	in	handy	
• Entity	Graphs

Entity	Graphs	in	JPA	2.1

• ‘A	template	that	captures	the	paths	and	boundaries	
for	an	operation	or	query’	

•Fetch	plans	for	query	or	find	operations	
•Defined	by	annotations	
•Created	programmatically	

Entity	Graphs	in	JPA	2.1

•Defined	by	annotations		
• @NamedEntityGraph,	@NamedEntitySubgraph,	

@NamedAttributeNode		

•Created	programmatically		
• Interfaces	EntityGraph,	EntitySubgraph,	AttributeNode	

Entity	Graphs	in	Query	or	Find

•Default	fetch	graph		
• Transitive	closure	of	all	its	attributes	specified	or	defaulted	as	EAGER		

• javax.persistence.fetchgraph	
• Attributes	specified	by	attribute	nodes	are	EAGER,	others	are	LAZY	

• javax.persistence.loadgraph		
• Attributes	specified	by	by	attribute	nodes	are	EAGER,	others	as	

specified	or	defaulted	

Entity	Graph	Advantages

•Better	hints	to	JPA	providers		
•Hibernate	now	generates	smarter	queries  
–	1	select	with	joins	on	3	tables 
–	1	round-trip	to	a	database	instead	of	default	N+1		

•Dynamic	modification	of	a	fetch	plan	

Annotation	Hell
@NamedEntityGraphs({
 @NamedEntityGraph(name="previewEmailEntityGraph", attributeNodes={
 @NamedAttributeNode("subject"),
 @NamedAttributeNode("sender"),
 @NamedAttributeNode("body")
 }),
 @NamedEntityGraph(name="fullEmailEntityGraph", attributeNodes={
 @NamedAttributeNode("sender"),
 @NamedAttributeNode("subject"),
 @NamedAttributeNode("body"),
 @NamedAttributeNode("attachments")
 })
})
@Entity
public class EmailMessage { ... }

61

Query	Usage
EntityGraph<EmailMessage> eg =
em.getEntityGraph("previewEmailEntityGraph");
List<EmailMessage> messages =
em.createNamedQuery("findAllEmailMessages")
 .setParameter("mailbox", "inbox")
 .setHint("javax.persistence.loadgraph", eg)
 .getResultList();

62

It	Wouldn’t	Be	That	Bad,	If	It	
Worked…

63

There’s	that	question…

A	fool	with	a	tool	is	only	a	fool!

Continuous	Learning	

Q&A

• patrycja@yonita.com	

• @yonlabs

mailto:patrycja@yonita.com

