
@yonlabs#jwtsecurity #jfuture

The Hacker’s Guide 
to JWT Security

Patrycja Wegrzynowicz
Yon Labs

`



@yonlabs#jwtsecurity #jfuture

About Me
! 20+ professional experience 
– Software engineer, researcher, 

head of software R&D
! Author and speaker
– JavaOne, Devoxx, JavaZone, …

! Top 10 Women in Tech 2016 PL
! Founder and CTO Yon Labs
– Automated detection and refactoring of 

software defects
– Consulting, trainings, code audits
– Security, performance, databases

! Oracle Groundbreaker Ambassador



@yonlabs#jwtsecurity #jfuture

Agenda
! Introduction to JSON Web Tokens

! Demo
– 4 demos

– Problems: RFC, algorithms, implementations, applications

– Web demos powered by Oracle Cloud

! Best practices



@yonlabs#jwtsecurity #jfuture

The First Caveat of JWT…

How to pronounce JWT?



@yonlabs#jwtsecurity #jfuture

RFC 7519, JSON Web Token

source: https://tools.ietf.org/html/rfc7519



@yonlabs#jwtsecurity #jfuture

RFC 7519, JSON Web Token

source: https://tools.ietf.org/html/rfc7519



@yonlabs#jwtsecurity #jfuture

JSON Web Token

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiIxIiwiaWF0IjoxNTczMDk2NT
U4LCJpc3MiOiJqd3QtZGVtbyIsImV4cCI6MTU3NTY4ODU1OH
0.wf50qNmdWNSw2e3OeAvjUdH50hX4ak6S47nh7VNn6Vk



@yonlabs#jwtsecurity #jfuture

JSON Web Token

eyJhbGciOiJIUzI1NiJ9.eyJzdWIiOiIxIiwiaWF0IjoxNTczMDk2NT
U4LCJpc3MiOiJqd3QtZGVtbyIsImV4cCI6MTU3NTY4ODU1OH
0.wf50qNmdWNSw2e3OeAvjUdH50hX4ak6S47nh7VNn6Vk



@yonlabs#jwtsecurity #jfuture

JSON Web Token

source: https://jwt.io

BASE64URL



@yonlabs#jwtsecurity #jfuture

HTTP Request with JSON Web Token 



@yonlabs#jwtsecurity #jfuture

Demos
! Links posted at Twitter
– https://twitter.com/yonlabs

! Demo application available 
– http://demo.yonlabs.com

– Register your account and log-in

– Hosted on Oracle Cloud

https://twitter.com/yonlabs
http://demo.yonlabs.com/


@yonlabs#jwtsecurity #jfuture

Demo #1
None Algorithm



@yonlabs#jwtsecurity #jfuture

Demo #1
None Algorithm



@yonlabs#jwtsecurity #jfuture

Demo #1, None Algorithm

NO SIGNATURE



@yonlabs#jwtsecurity #jfuture

io.jsonwebtoken

parseClaimsJws



@yonlabs#jwtsecurity #jfuture

Another Library with None Problem
! National Vulnerability Database

source: https://nvd.nist.gov/vuln/detail/CVE-2018-1000531



@yonlabs#jwtsecurity #jfuture

Demo #1, None Algorithm, Problems
! RFC problem
– none available

! Implementation problem
– Libraries and their APIs

! Application developers’ problem
– Know your tools



@yonlabs#jwtsecurity #jfuture

Library API Problem
! Examples
– parse vs. parseClaimsJws

– decode vs. verify

! Best practices
– Understand your JWT library

– Check out NVD

– Require a specific algorithm and a key during verification



@yonlabs#jwtsecurity #jfuture

Why to Require Algorithm and Key?
! HMAC-SHA signed with RSA public key



@yonlabs#jwtsecurity #jfuture

HMAC-SHA signed with RSA public key
JWT

Algorithm: RS (asymmetric RSA + SHA)
signed with a server RSA private key
verified with a server RSA public key

server JWT
Changed algorithm: HS (symmetric HMAC + SHA)

signed with a server RSA public key as an HMAC secret 
(RSA public keys often available)

verified with a server key (RSA public key used in HMAC)



@yonlabs#jwtsecurity #jfuture

Why to Require Algorithm and Key?
! Key provided in JWT header (sic!)



@yonlabs#jwtsecurity #jfuture

Key provided in JWT header (sic!)
JWT

Algorithm: RS (asymmetric)
signed with a server’s RSA private key
verified with a server’s RSA public key

server JWT
Algorithm: RS (asymmetric)

signed with a hacker’s RSA private key
A hacker’s RSA public key provided in a JWT header

verified with a hacker’s RSA public key (!) 



@yonlabs#jwtsecurity #jfuture

Good API Design: auth0:java-jwt



@yonlabs#jwtsecurity #jfuture

Demo #2
HS256 Password/Key Cracking



@yonlabs#jwtsecurity #jfuture

Demo #2
HS256 Password/Key Cracking



@yonlabs#jwtsecurity #jfuture

Demo #2, hashcat



@yonlabs#jwtsecurity #jfuture

Demo #2, Problems
! Only one token needed
– No communication with a verification server

– All cracking done offline

– A victim/a system are unaware of the attack

! Weak key problem
! Complications
– Many algorithms

– Different kinds of keys



@yonlabs#jwtsecurity #jfuture

JWT, Algorithms
! HS Family 
– HMAC with SHA

– Symmetric

! RS Family
– RSA with SHA

– Asymmetric

! ES/PS Families
– Elliptic Curves with SHA

– RSA Probabilistic Signature Schema with SHA



@yonlabs#jwtsecurity #jfuture

JWT, HS Family
! HMAC with SHA
– 256, 384, 512
– Symmetric, shared key

! Key size
– https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-

strong-keys-to-sign-jwts/
– „As a rule of thumb, make sure to pick a shared-key as long as the length of the 

hash.”
– HS256 => 32 bytes minimum

! Scalability
– More servers => larger attack surface
– One server compromised => the entire system compromised

https://auth0.com/blog/brute-forcing-hs256-is-possible-the-importance-of-using-strong-keys-to-sign-jwts/


@yonlabs#jwtsecurity #jfuture

JWT, RS Family
! RSA-PKCS1.5 with SHA
– 256, 384, 512
– Asymmetric, public/private keys
! Key size
– https://www.nist.gov (US DoC) recommendation
– 2048 bits => 256 bytes
– 3072 bits for security beyond 2030
! Scalability and performance
– Authentication server/servers => private key
– Verification servers => public key
– The longer key => the slower verification

https://www.nist.gov/


@yonlabs#jwtsecurity #jfuture

Demo #3
Packet Sniffing



@yonlabs#jwtsecurity #jfuture

Demo #3, Problems
! Lack of encryption
– HTTPS

! Token sidejacking
– Stolen tokens can be freely used

– Used as long as they are valid (expiration time!)

– “Replay” attack



@yonlabs#jwtsecurity #jfuture

Demo #4
XSS to Steal a Token



@yonlabs#jwtsecurity #jfuture

Demo #4
XSS to Steal a Token



@yonlabs#jwtsecurity #jfuture

XSS Attack Vector



@yonlabs#jwtsecurity #jfuture

Demo #4, Problems and Solutions
! XSS
! No way to block access to a session storage for JS
! Best practices anti-XSS
– Content Security Policy
– Code audits/pen-testing to discover XSS
– Good libraries and smart usage

! Hardened cookie as a storage mechanism for JWT
– No server-side state
– Flags: secure, httpOnly, sameSite
– But… CSRF L



@yonlabs#jwtsecurity #jfuture

OWASP Token Sidejacking Solution
! https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token

_Cheat_Sheet_for_Java.html
! Fingerprint
– Random secure value
– Hashed and added to JWT claims
– Raw value set as a hardened cookie
! JWT in session storage
! Verification
– Verifies JWT
– Hashes a cookie value
– Verifies if a hashed cookie and JWT fingerprint values are equal

https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html


@yonlabs#jwtsecurity #jfuture

JWT Security



@yonlabs#jwtsecurity #jfuture

A fool with a tool is only a fool



@yonlabs#jwtsecurity #jfuture

Continuous Learning



@yonlabs#jwtsecurity #jfuture

Q&A
! patrycja@yonlabs.com

! @yonlabs

mailto:patrycja@yonlabs.com

